Contribution of Using Hadamard Fractional Integral Operator via Mellin Integral Transform for Solving Certain Fractional Kinetic Matrix Equations

نویسندگان

چکیده

Recently, the importance of fractional differential equations in field applied science has gained more attention not only mathematics but also electrodynamics, control systems, economic, physics, geophysics and hydrodynamics. Among many are kinetic equations. Fractional-order Equations (FOKEs) a unifying tool for description load vector behavior disorderly media. In this article, we employ Hadamard integral operator via Mellin transform to establish generalization some fractional-order including extended (k,τ)-Gauss hypergeometric matrix functions. Solutions certain (FOKMEs) involving functions introduced. Moreover, several special cases our main results archived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new results using Hadamard fractional integral

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...

متن کامل

New Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order

In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in ord...

متن کامل

Solving Abel Integral Equations of First Kind via Fractional Calculus

We give a new method for numerically solving Abel integral equations of first kind. An estimation for the error is obtained. The method is based on approximations of fractional integrals and Caputo derivatives. Using trapezoidal rule and Computer Algebra System Maple, the exact and approximation values of three Abel integral equations are found, illustrating the effectiveness of the proposed ap...

متن کامل

some new results using hadamard fractional integral

fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order.the purpose of this work is to use hadamard fractional integral to establish some new integral inequalities of gruss type by using one or two parameters which ensues four main results . furthermore, other integral inequalities of reverse m...

متن کامل

Fractional Calculus for Solving Abel’s Integral Equations Using Chebyshev Polynomials

Abstract In this paper, the numerical method for solving Abel’s integral equations is presented. This method is based on fractional calculus. Also, Chebyshev polynomials are utilized to apply fractional properties for solving Abel’s integral equations of the first and second kind. The fractional operator is considered in the sense of RiemannLiouville. Although Abel’s integral equations as singu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6060305